

weShare

solidarisch – gemeinnützig parteiübergreifend

Peter Kuch

2. Vorsitzender

Geopolitische Lage

- USA (Trump) verändert alle Strukturen unumkehrbar?
- Putin geht als Sieger hervor bleibt hungrig?
- China beobachtet, handelt, übernimmt Märkte und ...?
- EUROPA muss aus der Komfortzone schnell und nachhaltig!

Bedeutung in der Energieversorgung für EURPA und Deutschland:

- EEG vor Ort (Wind/Sonne) senken Energieimporte
- Resilienz durch Autarkie bis in die kleinste Zelle (Kommune/Wohnhaus)
- Ausbau von redundanter Infrastruktur (Netz/Speicherung)

Geopolitische Lage

Antriebsarten im Vergleich / Energiebedarf

3 MW 2000 h/a

1 Windrad versorgt... Energiequelle Energieträger Drive lokal PKW mit 20.000 km / Jahr emissionfrei ~~~~~~~ **~~~~~~~** Strom ja **~~~~~~~** Batterie (BEV) 1600 Fahrzeuge Wasserstoff ja Elektroauto mit Brennstoffzelle e.g. (FCEV) 1 wind 600 Fahrzeuge turbine 3 Megawatt 3000 h/year nein eFuel Verbrennungsmotor (ICE) 250 Fahrzeuge

Itig!

Strom: 1600 PKW

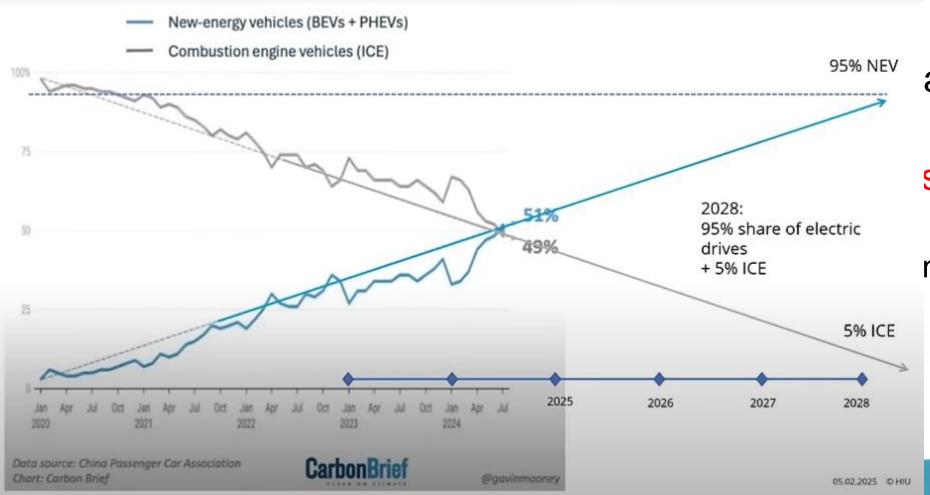
chland:

Wasserstoff: 600 PKW

haus)

e-Fuel: 250 PKW

05.02.2025 © HIU


Ref: VDE 2023

Geopolitische Lage

altig!

schland:

nhaus)

VW in der Krise

wichtigste Absatzmarkt für VW, Asien, Nachfrage deutlich gesunken China – wo zuletzt allein ein Drittel aller VW-Fahrzeuge verkauft wurde drohende Werksschließungen und Stellenabbau

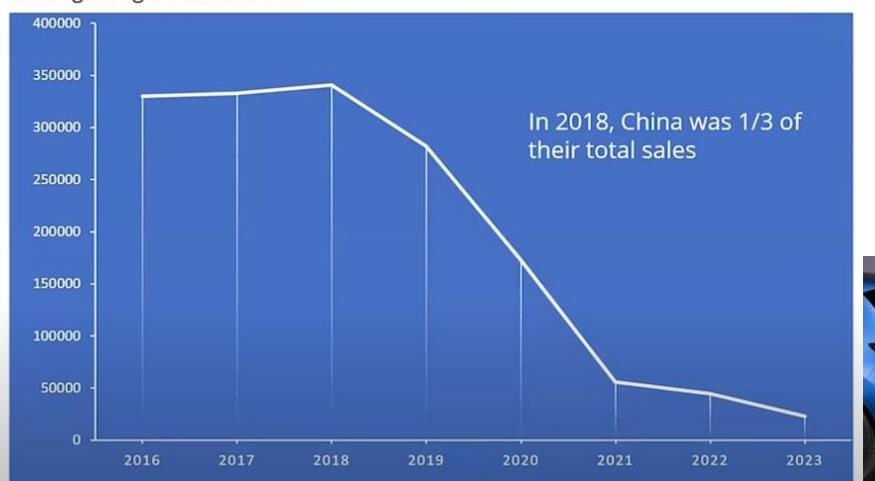
VW hält an Investitionen in Zukunftstechnologien fest

Bereits 2025 soll eine <u>seriennahe Studie des ID.2</u> vorgestellt werden, einem Kleinwagen mit einem Zielpreis von unter 25.000

VW in der Krise

Antriebstechnik: Verbrenner vs. elektrisch

Bewegte Teile: ca. 1300


Bewegte Teile: ca. 40

VW in der Krise

Verkauf von Verbrennern (SKODA) 2016 – 2023 in China

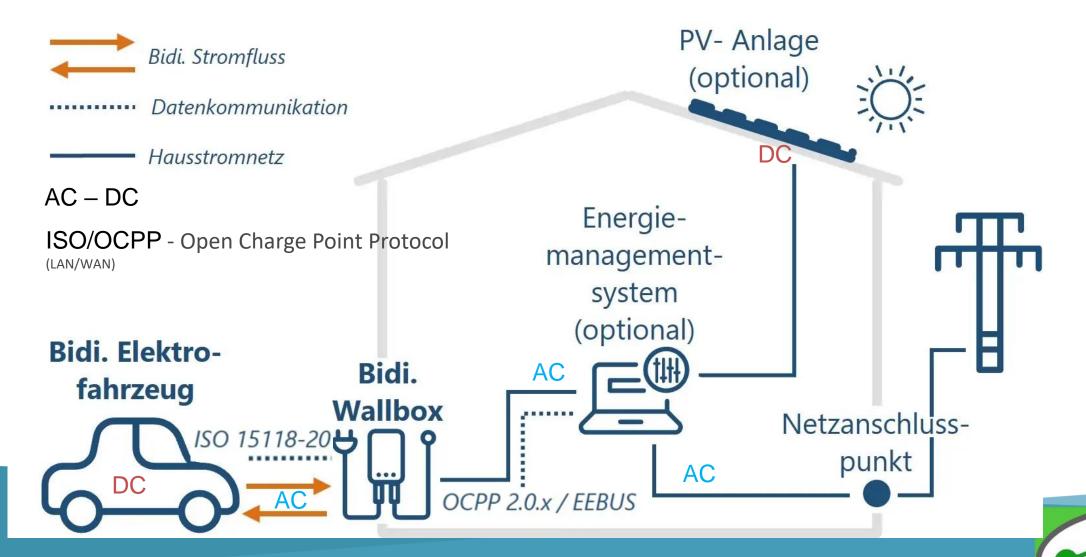
The beginning dusk of ICE cars

Bidirektionales Laden e-Autos als Stromspeicher nutzen

Erneuerbare auf dem Vormarsch Ökostrom – benötigt Speicher - Elektroautos können helfen

Voraussetzungen – Netz – Wallbox - eAuto Vorteile – Nachteile – Wirtschaftlichkeit

Konzepte bidirektionalem Ladens


- V2L Stromversorgung einzelner Elektrogeräte (Heckenschere)
- V2H Stromversorgung eines Hauses
- V2G Normgerechte Anbindung an das öffentliche Stromnetz
 Schweiz: Betrieb bid. Ladestationen bereits erlaubt, lediglich Zustimmung des Stromversorgers nötig
 Entnommener Strom einem herkömmlichen Speicher mit gleichen Konditionen gleichgesetzt
- V2B Versorgung große Gebäude mit mehreren Parteien mehrere Fahrzeuge - decken Lastspitzen ab
- V2V Laden anderer eAutos oder Camper, Boote
 TESLA Cypertruck: 123 kWh-Batterie, Abgabe: 9,6 kW

Voraussetzungen – Netz – Wallbox - eAuto

Welche eAutos können es schon?

Modell	Stecker	AC/DC	Art
Genesis Electrified G80 / GV70	Schuko	AC (1- phasig)	V2L, Einführung von V2H und V2G voraussichtlich in der nächsten Generation
Hyundai loniq 5 / 6	Schuko	AC (1- phasig)	V2L
Kia EV6 / Niro EV	Schuko	AC (1- phasig)	V2L
MG 4 / 5 Marvel	Schuko	AC (1- phasig)	V2L
Volvo EX90	Schuko / Typ 2 / CCS	AC (1/3- phasig) / DC	V2L / V2H / V2G (vorbereitet)
Polestar 3	Schuko / Typ 2 / CCS	AC (1/3- phasig) / DC	V2L / V2H / V2G (vorbereitet)
Nissan Leaf	CHAdeMO	DC	V2H / V2G (vorbereitet)

Quelle: ADAC

Welche eAutos können es schon?

Modell	Stecker	AC/DC	Art
Cupra Born (mit VW-Konzern- Software 3.5 und 77kWh)	CSS	DC	VW bietet ab Anfang 2024 V2H mit Wallbox und Hauskraftwerk S10 E Compact von E3/DC an, V2G vorbereitet
VW ID.3, ID.4, ID.5, ID Buzz (mit VW-Konzernsoftware und 77kWh)	CSS	DC	VW bietet ab Anfang 2024 V2H mit Wallbox und Hauskraftwerk S10 E Compact von E3/DC an, V2G vorbereitet
Skoda Enyaq (mit VW- Konzern-Software 3.5 und 77 kWh)	CCS	DC	VW bietet ab Anfang 2024 V2H mit Wallbox und Hauskraftwerk S10 E Compact von E3/DC an, V2G vorbereitet

Quelle: ADAC

Welche VW-Autos können es schon?

Rückspeisefähig sind alle VW-ID-Modelle. Neufahrzeuge mit 77-kWh-Akku

VW

- ID.3 Pro S
- ID.4 Pro 4 Motion
- ID.4 GTX
- ID.5
- ID.7 Pro
- ID.Buzz (Kurzversion)

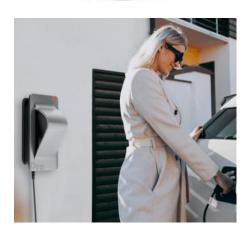
Quelle: VW

Welche Wallboxen können es schon?

Kommunikation und hat ISO15118 implementiert.

Fahrzeuge automatisch zu erkennen und zu unterscheiden (Plug And Charge).**

Der Ladezustand des Fahrzeugs (SoC) auslesbar.***


Sie ist damit Vehicle 2 Grid ready.****

Die automatische Umschaltung zwischen 1- und 3-Phasen ist standardmäßig enthalten.

Wallbox Quasar 5.990,00 €

laden mit direkten DC Gleichstrom Mit einem DC Umwandlung von Wechsel – auf Gleichspannung geschieht in der Quasar Wallbox. Die Ladestation lädt und entlädt 1-Phasig mit bis zu 32 Ampere (A) Laden und entladen mit 7,4 kW Der Ladestrom lässt sich zwischen 6A bis 32A regeln

SmartFox Pro2 1.350,00 €

100 % PV-Überschussladen Stufenloses Laden von 1,4 bis 11 kW Automatische Umschaltung von 1- auf 3-phasiges Laden Dynamisches Lastmanagement

Laden mit 100 % grünem Strom möglich

Richtig flexibel: kompatibel mit Geräten anderer Hersteller RFID Zugangsschutz

Erkennt Fahrzeugtypen und optimiert Ladevorgang entsprechend Auf bidirektionales Laden nach ISO 15118-20 vorbereitet

KI vorbereitet

Kostenfreies Echtzeit-Monitoring – auch per App Fernzugriff für Installateure Energiezähler inklusive

:HagerEnergy witty

Im Test mit VW / AUDI

Batteriegröße 77 kWh

Wallbox DC-Wallbox von E3/DC

Hauskraftwerk S10 E Compact von E3/DC

Nachteile des bidirektionalen Ladens

- Lebensdauer der Batterie kann beeinträchtigt werden
- Erfordert spezielle Wallboxen und Ladekabel
- Umwandlungsverluste DC-AC-DC
- Erfordert Anpassungen an das Stromnetz

Vorteile des bidirektionalen Ladens

- Erhöhung des Eigenverbrauches
- Fossile Brennstoffe einsparen
- Notstromquelle bei einem Stromausfall
 - wichtige elektrische Geräte oder Systeme versorgen
- Mehr Unabhängigkeit vom öffentlichen Netz
- Höhere Versorgungssicherheit Resilienz in unsicheren Zeiten
- Vehicle-to-Grid (V2G)-Technologie
 - überschüssige Energie ins Stromnetz zurückspeisen
 - Netzschwankungen stabilisieren
- Neue Einnahmemöglichkeiten
 - in Zeiten hoher Strompreise oder bei hoher Nachfrage.

Aktueller Stand

ISO Norm 15118-20 (April 2024) definiert die Technischen Standards Bidirektionales Laden grundsätzlich zulässig Soll das Einspeisen ins öffentliche Netz bis 2028 ermöglichen

Roadmap der nationalen Leitstelle Ladeinfrastruktur (Stand 2024)

- •In der <u>Ladesäulenverordnung</u> fehlen die Definitionen oder technische Voraussetzungen des bidirektionalen Ladens.
- •Im <u>Elektromobilitätsgesetz</u> fehlt die Definition der verschiedenen Rückspeisungsmöglichkeiten oder die Kennzeichnung von bidirektionalen Ladesäulen.
- •Das <u>Erneuerbare-Energien-Gesetz</u> (EEG) berücksichtigt Elektrofahrzeuge weder als mobile Speicher noch generell zur Energiespeicherung.
- •Das <u>Energiewirtschaftsgesetz</u> (EnWG) und das EEG besitzen unterschiedliche Definitionen des Letztverbrauchers.

Garantiebedingungen von Akkus von Elektrofahrzeugen:

Garantiebedingungen der Autohersteller von Akkus kann eine Beschränkung des bidirektionalen Betriebs vorsehen

Vorteile PV + Elektromobil

Jährlicher Stromertrag PV-Anlage			kWh	8740
Eigenverbrauch		58%	kWh	5069,2
eingesparte Stromkosten		5069,2	0,25 €	1.267,30 €
Netzeinspeisung	42%	3670,8	0,08€	293,66 €
Jährlicher Stromertrag PV-Anlage				1.560,96 €

Rentabilität PV-Anlage			
Kosten PV-Anlage incl. Li-Eisen-Speicher 8 kWh			23.000,00 €
Speichererweiterung 2 kWh			2.000,00€
Kosten PV-Anlage			25.000,00 €
dividiert durch Nettoertrag ./. Stromertrag / Jahr			1.560,96 €
Rentabilität		Jahre	16,0

Kosten Elektro-Fahrzeug / Jahr				
Stromverbrauch	km Jahr	kWh/100 km	kWh gesamt	
Auto TESLA	30.000	17	5.100	
Auto Renault ZOE	20.000	16	3.200	
Stromverbrauch Autos		0,25€	8.300	2.075,00€
Wartung/Inspektion 3 Jährlich		120,00€	3	40,00€
Steuer 10 Jahre	8.	:		- €
Gesamtkosten Elektro-Fahrze	ug / Jahr	-	-	2.115 €

Kraftstoffverbrauch		ltr/100 km	ltr Diesel	
Audi A6 Quatro	30.000	9	2.700	
VW Golf VI	20.000	6	1.200	
Kraftstoffkosten / Jahr	E .	1,35 €	3.900	5.265,00 €
Inspektion/Wartung 3 jäh	nrlich	800,00€	3	266,67€
Steuer				144,00 €

Jährlicher Vorteil e-Auto gegenüber Verbrenner		3.560,67 €
Jährlicher Stromertrag PV-Anlage		1.560,96 €
Jährlicher Vorteil e-Auto gegenüber Verbrenner		3.560,67 €
Jährlicher Gesamtvorteil e-Auto + PV-Anlage		5.121,63 €

Rentabilität PV-Anlage + eAuto			
Kosten PV-Anlage incl. Li-Eisen-Speicher 8 kWh			23.000,00€
Speichererweiterung 2 kWh			2.000,00€
Mehrkosten TESLA - AUDI A6 Quatro	48.490 €	40.660 €	7.830,00 €
Mehrkosten ZOE - Golf VI	17.000 €	16.500 €	500,00€
Kosten PV-Anlage + Mehrkosten Elektroautos	33.330,00 €		
dividiert durch Nettoertrag Verbrennerkosten ./. Stromertrag / Jahr			5.121,63 €
Rentabilität Jahre			6,5

PV-Strom zum Laden des eAutos reduziert den Zeitraum der Amortisation nochmals

Danke für Ihre Aufmerksamkeit

Fazit:

Auch wenn das bidirektionale Laden noch auf sich warten lässt, ist der Kauf und das Nutzen eines eAutos wirtschaftlich sinnvoll und national wichtig.

Peter Kuch

2. Vorsitzender Westhausener Gerätering-weShare e.V.

DGS zert. Solarberater Photovoltaik

e-Mail: kuch.peter@westhausener-geraetering-weshare.de

Tel. 0152 219 408 76

